Endothelial cell functions

- Transport of molecules over the vessel wall
- Initiation of the clotting system
- Selection of the white blood cells forming the leukocyte infiltrate
- New blood vessel formation (angiogenesis)

Neovasculature formation

- Vasculogenesis - formation of blood vessels from stem cells or by sprouting/intussusception during embryogenesis.
- Angiogenesis - formation of capillaries from pre-existing vasculature.

Angiogenesis is pivotal in tissue growth and development

Angiogenesis plays a role in:

- Normal physiology: wound healing, female reproductive cycle, inflammation, (embryogenesis).
- Pathological disorders: cancer, arthritis, diabetes retinopathy, cardiovascular diseases, endometriosis, ischemia, psoriasis, ulcers, decubitus, adiposity.

Angiogenesis stimulation

The molecular players

- Angiogenin
- Angiopoietins (-1, -2 and -3)
- Del-1
- Fibroblast growth factors: acidic (aFGF) and basic (bFGF)
- Follistatin
- Granulocyte colony-stimulating factor (G-CSF)
- Hepatocyte growth factor (HGF) / scatter factor (SF)
- Interleukin-8 (IL-8)
- Leptin
- Mekin
- Plecaryosin growth factor (IGF)
- Platelet-derived endothelial cell growth factor (PD-ECGF)
- Pleiotrophin
- Plasminogen activator inhibitor
- Transforming growth factor-alpha (TGF-alpha)
- Transforming growth factor-beta (TGF-beta)
- Vascular endothelial growth factor (VEGF)

Angiogenesis inhibition

The molecular players

- Angiostatin (plasminogen fragment)
- Antiangiogenic antithrombin III (aaATIII)
- Bacterial permeability increasing protein (BPI)
- Canstatin
- Cardiac-derived inhibitor (CDI)
- CD59 complement fragment
- Endostatin (collagen XVIII fragment)
- Fibrinogen fragment
- Fibrinogen beta
- Heparinase
- Heparinase
- Human chorionic gonadotropin (HCG)
- Interferon alpha/beta/gamma
- Interferon inducible protein (IP-10)
- Interleukin-12 (IL-12)
- Kringla 5 (plasminogen fragment)
- Metalloproteinase inhibitors (TIMPs)
- 2-Methoxyestradiol (2-ME)
- Pigment epithelial-derived factor (PEDF)
- Piasenin/fibroblast growth factor
- Plasminogen activator inhibitor
- Prolactin 16K fragment
- Prostatin-related protein
- Resistin
- Retinoids
- Tetrahydrocortisol-1
- Thrombospondin-1
- Transforming growth factor-beta
- Vasculostatin
- Vasostratin
Angiogenesis is regulated by stimulators and inhibitors

- In quiescent/normal tissue the angiogenic switch is in balance or off.
- Angiogenesis can be achieved by increase in stimulators or decrease of inhibitors.

The Balance Hypothesis for the Angiogenic Switch

Why target endothelium rather than tumor cells?

- Endothelial cells are the first to encounter the blood.
- Therapy independent of tumor type.
- Genetically stable; no mutation into drug resistant variants.
- Avalange of effect; a lot of tumor cells depend on one endothelial cell.

Angiogenesis inhibition
The molecular players

- AVE 6271 (Avastin)
- A23187 (Gleevec)
- AGS2344 (Apoptin)
- Angiostatin (deer milk)
- Batimastat (BB-95)
- BHE 940
- BMS-25 (CM Maz broadcast)
- C219
- CT-365 (human endothelin)
- CT-299
- Endostatin (EndoMax)
- Growth factor kinase inhibitor (GFKI)
- Hepatitis C virus-derived peptides
- Heparin cell antiproliferant (Hepcidin)
- Interferon
- Linomide
- Matrix metalloproteinase inhibitors (MMP)
- Methotrexate (anti-metabolite inhibitor)
- Minocycline
- NGF inhibitors
 - Anti-angiostatin (AP-1)
 - Anti-VEGF (Avastin)
 - Si-L(A)
 - SBS-23 (Chugai)
- α4β1 integrin (Integrin)

- AM 0.9 (1DCF6c/2)
- Pexilin (i) (i254)
- PEN-148 (P1)
- TNFα binding protein (TNB-1)
- TPX
- Endostatin (EndoMax)
- TNP-470 (Thalidomide)
- Tac-1 (Thalidomide)
- Tanespimycin
- Dictyostelium (DD)
- Thalidomide (D-Coid)
- Tumor necrosis factor inhibitors (TNF-inhibitors)
- TNAPIC
- Tumor necrosis factor
- UFT (G5)
- ZD451 (AGSTN inhibitor (Integrin))

Angiogenesis 1

- Early 1960s
- Search for sleeping drug for pregnant women
- Thalidomide was selected for low or absent toxicity

- A few years later the drug was identified as being teratogenic, causing stunted limb growth in humans
- 1994: Thalidomide is an angiogenesis inhibitor

Thalidomide inhibits angiogenesis

Discovery of Angiostatin

Some tumors develop metastasis after removal of the primary tumor.
A model: Lewis Lung Carcinoma in mice.

Discovery of angiostatin
The active factor was a cleavage fragment of plasminogen called angiostatin.

Angiogenesis inhibition does not induce resistance
A subsequent discovery was endostatin. Endostatin brings tumors in dormant state. Endostatin treatment is efficacious in multiple rounds of treatment.

Strategies for inhibition of angiogenesis
(1.) Inhibition of endothelial cell proliferation
- TNP-470, angiostatin, endostatin, anginex
- most successful as yet in animal experiments
- Phase I-II clinical testing

(2.) Inhibition of endothelial cell migration
- blockade of adhesion molecules e.g. αvβ3-integrin, interferon-α.
- successful in hemangiomas and giant cell tumors.
- Phase I-II clinical studies.

(3.) Inhibition of matrix metalloproteinases (MMP-inhibitors)
- batimastat, marimastat, AG3340.
- Phase III clinical testing.
- initially very promising, several compounds have been retracted from clinical testing.

(4.) Inhibition of endothelial signaltransduction
- SU5416 inhibitor of VEGF-receptor signaling, CAI inhibitor of motility and metastasis by blocking of Ca-mobilization.
- phase III clinical testing
Strategies for inhibition of angiogenesis

(5.) Attenuation of tumor blood flow (vascular targeting)
- targeting of toxins or isotopes to tumor vasculature specific antigens (TNF, αvβ3-integrin, CD44, endoglin/CD105, combretastatin).
- preclinical testing

Assays and models

- Endothelial cell growth (proliferation / death), migration, differentiation.
- In vitro angiogenesis assays - sprouting / tube formation.
- In vivo angiogenesis assays - chick CAM, semi-natural matrix plugs, dorsal skin fold chamber.
- Microvessel density and architecture.

In vitro angiogenesis assay

Chorio-allantoid membrane (CAM) assay
The dorsal skin fold chamber

Staining of microvessels

Analysis of microvessel density and vessel architecture

An applied and preclinical study

Development of new angiogenesis inhibitors

- Approach: ‘de novo’ design of cytokine-like peptide that inhibit angiogenesis.
- Preparation of a library of PF4 related 33-mer peptides, β-sheet structured, stable and water-soluble.
- 3 out of 35 different peptides had anti-angiogenic properties.
- One peptide, βpep-25, inhibited angiogenesis better than PF4.

Design of a new angiogenesis inhibitor for the treatment of cancer.

- De novo design of a peptide library.
- Well structured, stable and water-soluble.
- Screen for peptides in HTP (high through put) assay
- One peptide inhibited angiogenesis better than all other known compounds.
- This peptide is named anginex.
Anginex induces apoptosis in endothelial cells

The peptide library

Anginex inhibits EC proliferation

Anginex inhibits angiogenesis in vitro

Anginex inhibits angiogenesis in vivo

Angiogenesis inhibition in mice
Anginex targets tumor vessels and inhibits tumor growth.