Antiangiogenic Therapy Elicits Malignant Progression of Tumors to Increased Local Invasion and Distant Metastasis

Marta Plaz-Ribes,1,6 Elizabeth Allen,2,6 James Hudock,1 Takashi Tsukada,4 Hiroaki Okuyama,4 Francesc Vilaplana,1,6 Masaaki Inoue,1 Gabriele Ruggieri,3 Douglas Haskell,3 and Oriol Casanovas1,*
1Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, 08037 L’Hospitalet de Llobregat, Spain
2Department of Biochemistry & Biophysics, Diabetes Center, and Helen Diller Family Comprehensive Cancer Center
3Department of Neurosurgery and Helen Diller Family Comprehensive Cancer Center
University of California, San Francisco, San Francisco, CA 94143, USA
4Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka 557-8511, Japan
5Department de Ciències Pi d’Obres, Universitat de Barcelona, IDIBELL, 08037 L’Hospitalet de Llobregat, Spain
6These authors contributed equally to this work.
*Correspondence: dhudock@hms.harvard.edu, casanovas@oncologia.net (O.C.)
DOI 10.1016/j.ccr.2009.01.027
Introduction

- Angiogenesis is pivotal for the progression of tumors.
- Endothelial cells (ECs) are an attractive target for therapy:
 - ECs are a homogeneous population; tumor type independent therapy.
 - ECs are the first to encounter the blood; easy drug delivery.
 - Endothelial cells are genetically stable; no drug resistance.
 - Multiple tumor cells depend on a single EC; avalanche of effect.
- Great efforts have been put to developing drugs targeting angiogenesis.
- Several drugs have been approved for use in the clinical setting.

Introduction

- Angiogenesis inhibitors targeting the VEGF signaling pathway have shown clinical benefit, survival of patients is increased with several months.
- Stable disease is not reached and the effects are only transient.
- Relapse to progressive disease suggests induction of resistance.
- The current study shows that tumors develop adaptive and invasive strategies to circumvent the inhibition of the VEGF signaling pathway.
Figure 1: Increased invasive phenotype after anti-VEGFR2 therapy

A

Control (end-stage) | Anti-VEGFR2 1 week | Anti-VEGFR2 4 weeks

H&E

Anti-T antigen

Anti-CD31

B

IT | IC1 | IC2

% viable area per animal

C

% total tumor per animal

12 wks | 13 wks | 14 wks | 15 wks | 16 wks
Considerations and questions

• No tumor growth curves or survival curves are presented.

• Vasculature/angiogenesis is not characterized.
 - Quantification of micro-vessel density
 - Vessel normalization
 - Vessel functionality, e.g. perfusion
 - EC proliferation

• Tumor cell invasion is scored qualitatively, not quantitatively.

• H&E staining is more difficult to interpret than T-Ag staining.

• Stainings for T-Ag and vasculature on different regions.

• Note: Control mice are dead at T=16 weeks.

Figure 2: Increased tumor invasion after tumor specific Vegf-A gene deletion
Considerations and questions

- Again, tumor growth and survival are not shown.
- Again, no characterization of vascular parameters, except for MVA.
- MVA is only compared within a genotype and not between genotypes.
- Why switch from anti T-Ag staining to anti-insulin staining?
- No confirmation of effective VEGF-A knockdown.
Figure 3: Increased incidence of lymph node and liver metastasis in anti-VEGFR2 treated animals

A

Lymph Node

Liver

H&E

Anti-T antigen IHC

100 μm

10 μm

B

C

Table: Incidence of metastasis

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Liver Metastasis</th>
<th>LN Metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-VEGFR2</td>
<td>Yes: 7 (44%)</td>
<td>Yes: 11</td>
</tr>
<tr>
<td></td>
<td>No: 9 (60%)</td>
<td>No: 2</td>
</tr>
<tr>
<td>Control</td>
<td>Yes: 10</td>
<td>Yes: 15</td>
</tr>
<tr>
<td></td>
<td>No: 16</td>
<td>No: 15</td>
</tr>
</tbody>
</table>

* p < 0.05
** p < 0.01
Considerations and questions

- Again, tumor growth and survival are not shown.

- Other treatment scheme than in figure 1. In fig. 3, treatment started at 10 weeks and lasted for 10 days, whereas in fig. 1 treatment lasted for 1 or 4 weeks.

- No images of the control group are shown.

- It is counterintuitive that more liver metastasis are detected than lymph node metastasis.

- Mice were monitored until week 16 while the results from fig. 1 claim that all control mice die before they reach the age of 16 weeks.

Figure 4: Increased life span and tumor reduction in sunitinib-treated RIP1-Tag2 animals

![Graph showing increased life span and tumor reduction in sunitinib-treated RIP1-Tag2 animals.](image)
Considerations and questions

- Dull figure to demonstrate that sunitinib works.
- Treatment was continued for 5 weeks (B), which is different from the previous figures that emphasize that anti-VEGF treatment for only 1 week already induces clear changes.
- The survival curve refers to mice treated as from week 12 while the tumor burden refers to mice treated from week 10.
- The mice in (A) are treated continuously (> 7 weeks based on average survival difference) while mice in (B) received only 5 weeks treatment.
- What does this figure contribute to the paper?

Figure 5: Increased tumor invasion evoked by treatment with a multitargeted angiogenic kinase inhibitor
Considerations and questions

- Why not combined with figure 4?
- Only the perfused vessels are stained. It is not clear whether the treated tumors have less vessels or only less functional vessels.
- Again, treatment for 5 weeks for no apparent reason.
- Untreated controls in (B) and (C) are different from the data presented in Figures 1B and 3B.
- In (E), the number of metastasis detected in sunitinib treated mice is lower than in the control condition in figure 3C.
- Figure (C) lacks controls of untreated animals.
Figure 6: Effects of VEGFR-selective kinase inhibitors on an orthotopic mouse model of glioblastoma multiforme

A

WT GBM

Control | SU10944 | Sunitinib | VEGF-KO GBM

B

% Survival vs. Time (Days)

C

P values for comparison:

** indicates p < 0.01
Considerations and questions

- T-Ag staining not really clear.
- Tumor mass appears less in treated mice (less T-Ag detection) but increased in knock-out model.
- No characterization of vascular parameters
 Effect on vascular perfusion can be debated, why was perfusion used here and not staining?
- From 2 dimensional data it is not justified to conclude that 'GBM migrate alongside the blood vessels (perivascular invasion)'.
- Why is VEGF KO omitted from the survival curve?
- ‘Perivascular invasion’ scoring is arbitrary.
- the locations indicated by arrowheads do not really elucidate or clarify.
- GBM are known for their invasive phenotype and use of vessel co-option

Figure 7: Antiangiogenic treatment also provokes hypoxia in tumors and liver micrometastases
Considerations and questions

- Control treated animals (Aa and Ag) also have low vessel numbers but are apparently not hypoxic.
- The untreated WT tumor (Ad) is highly vascular as compared to Aa and Ag which are also WT and untreated.
- Why are different blood vessel stainings used (CD31, MECA 32)?

Conclusion of the paper

- VEGF targeted anti-angiogenesis therapy elicits an adaptive-evasive response involving an increased invasive phenotype and increased distant metastasis.
- The more effective the VEGF inhibition, the more pronounced the adaptive response.

Figure 8: Adaptive-evasive responses by tumors to anti-angiogenic therapies
Overall comments on this paper

- Inconsistency in experimental setup.
- Inconsistency between figures and experiments.
- Lack of proper controls.
- Many descriptive figures without any quantifications.
- No mechanistic insights.

Discussion

Proposed mechanisms that contribute to increased invasiveness.

- Activation of a pre-existing invasion program.
- Activation or elevated expression of matrix proteases.
- Epithelial-mesenchymal transition (EMT).
- Hypoxia-induced pro-invasive phenotype.
Discussion

The future of anti-angiogenesis therapy.

• Focus on the endothelium rather than on tumor-derived growth factors.
• Induction of vessel normalization.
• Combination therapy.
• Treatment scheduling.

Discussion

Suggestions for further reading.

• Review by Bergers and Hanahan.
 Modes of resistance to anti-angiogenic therapy. Bergers G, Hanahan D.
 Nat Rev Cancer. 2008;8(8).

• Comment by Carmeliet.
 Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited.